On the regularity of weak solutions to refractor problem

Aram L. Karakhanyan*

* Department of Mathematics, University of Texas at Austin
1 University Station C1200, Austin TX 78712-0257
aram@math.utexas.edu

Abstract

In this note we derive the Monge-Ampère type equation in Euclidian coordinates describing the refraction phenomena of perfect lens. This simplifies the regularity issues of the weak solutions on the problem.

Key Words: Monge-Ampere type equations, refracting surfaces, optimal mass transfer

Mathematics Subject Classification 2000: 35J60, 78A05

1 Introduction and main result

It is well-known that ellipse and hyperbola have simple refraction properties, namely if rays of light diverge from one focus, then after refraction they pass parallel to the major axis [4]. If the ellipse (resp. hyperbola) represents the boundary separating two medias, with refractive indices \(n_1, n_2 \) then according to refraction law

\[
 n_1 \sin \alpha = n_2 \sin \beta,
\]

where \(\alpha \) and \(\beta \) are the angles between normal and respectively the ray before and after refraction. Let \(k = n_1/n_2 \), then one can verify that \(k = 1/\varepsilon \), where \(\varepsilon \) is the eccentricity of ellipse (resp. hyperbola) [4]. These properties are limiting cases of solutions to more general problems of determining the surface required to refract rays of light diverging from one point and after refraction covering a given set of directions on the unit sphere. More precisely let us assume we are given two sets \(\Omega, \Omega^* \) on unit sphere centered at origin, and nonnegative integrable functions \(f, g \) defined respectively on \(\Omega \) and \(\Omega^* \). Suppose that a point source of light is centered at the origin \(O \) and for every \(X \in \Omega \) we issue a ray from \(O \) passing through \(X \), which after refraction from the unknown surface \(\Gamma \) is another ray given by a unit direction...
\[Y = Y(X) \in \Omega^* \]. It is clear that mapping \(Y \) is determined by \(\Gamma \). Let \(f(X) \) be the input intensity of light at \(X \in \Omega \) and \(g(Y) \) corresponding gain intensity after refraction at \(Y \in \Omega^* \). Now the problem can be formulated as follows: given two pairs \((\Omega, f) \) and \((\Omega^*, g) \) satisfying to energy balance condition

\[
\int_{\Omega} f = \int_{\Omega^*} g, \tag{1.1}
\]

find a surface \(\Gamma \), such that for corresponding mapping \(Y(X) \) we have

\[
Y(\Omega) = \Omega^*.
\]

We seek a \(\Gamma \) as a radial graph of a unknown function \(\rho \) i.e. \(\Gamma = \{ Z \in \mathbb{R}^{n+1}, Z = X \rho(X) \} \), then mathematically this problem is amount to solve a Monge-Ampère type equation

\[
\det(D^2_{ij}\rho - \sigma_{ij}(x, \rho, D\rho)) = h(x, \rho, D\rho), \tag{1.2}
\]

subject to boundary condition

\[
Y(\Omega) = \Omega^*. \tag{1.3}
\]

Here the derivatives are taken in some orthogonal coordinate system (see Theorem 1) and \(\Omega \) is a subset of upper half sphere. The solutions to (1.2), should be sought in the class of functions such that the matrix \(D^2_{ij}\rho - \sigma_{ij}(x, \rho, D\rho) \geq 0 \). It is easy to see that if \(\rho \in C^2 \) such that \(D^2\rho - \sigma_{ij} \geq 0 \) then equation (1.2) is elliptic with respect to \(\rho \).

It turns out that \(\rho \) is a potential function to an optimal transfer problem with a logarithmic cost function [1]

\[
c(X, Y) = \begin{cases}
\log \frac{1}{1-\epsilon(Y-X)}, & \epsilon > 1, \ X \cdot Y > k, \\
\log \frac{1}{1+\epsilon(Y-X)}, & \epsilon < 1, \ X \cdot Y < k.
\end{cases}
\]

A similar cost function appears in the reflector problem introduced by X-J. Wang [8], [9]. The regularity of the solutions to optimal transfer problems is discussed in [3] and [5]. The most important thing is the so-called A3 condition, imposed on matrix \(\sigma_{ij} \) [3]. As soon as one has it the rest of the regularity, both local and global will follow from the classical framework established in [3], [2] and [6]. In [11] authors have verified the A3 condition, however without using Euclidian coordinates.

In this note we give a simple way of verifying the A3 condition, for \(k < 1 \) without invoking to covariant derivatives. It is also explicit, strict and straightforward (3.4). Main idea is to find a simple formula for mapping \(Y(X) \) using a parametrization of upper unit half sphere, used in [2]. Then the rest will follow along the arguments of [2]. This method is very general and one can apply it to near-field problem. Indeed if one considers a map \(z = \rho x + ty, \) where \(t \) is the stretch function, then \(\det Dz \) will give the equation for near-field problem. However we don’t discuss this problem in the present note. It is worth noting that, if support functions are ellipsoids, i.e. \(k > 1 \) the A3 condition is not fulfilled (see (3.4)).
1.1 Notations

Let us consider the case of two homogeneous medias, with refractive constants n_1 and n_2. Ω and Ω^* are two domains on the unit sphere $S^n = \{X = (x_1, \ldots, x_{n+1}), x_1^2 + \cdots + x_{n+1}^2 = 1\}$. For $X \in S^n, x = (x_1, \ldots, x_n, 0)$. We also suppose that Ω is a subset of upper unit sphere $S^+_n = S^n \cap \{x_{n+1} > 0\}$. In what follows we consider ρ as a function of $x \in \Omega_0$, with Ω_0 as orthogonal projection of Ω on to hyperplane $x_{n+1} = 0$. By $D\rho$ we denote the gradient of function ρ with respect to x variable $D\rho = (Dx_1\rho, \ldots, Dx_n\rho, 0)$. The reciprocal of ρ is defined as $u = 1/\rho$. We also define two auxiliary functions $b = u^2 + |Du|^2 - (Du \cdot x)^2$ and $V = \sqrt{u^2 - \sigma b} + u$. In what follows $\sigma = (k^2 - 1)/k^2 = 1 - \varepsilon^2$.

1.2 The main results

Our main result is contained in the following

Theorem 1 If ρ is the radial function defining Γ, and $u = 1/\rho$, then u is a weak solution to

$$
\begin{align*}
\det \left\{ \frac{V - \sigma(u - Du \cdot x)}{\sigma} \left(Id + \frac{x \otimes x}{1 - |x|^2} \right) - D^2u \right\} &= h, \text{ if } k < 1, \\
\det \left\{ D^2u - \frac{V - \sigma(u - Du \cdot x)}{\sigma} \left(Id + \frac{x \otimes x}{1 - |x|^2} \right) \right\} &= h, \text{ if } k > 1,
\end{align*}
$$

where $b = u^2 + |Du|^2 - (Du \cdot x)^2$, $V = \sqrt{u^2 - \sigma b} + u$.

If we set $F = \sigma^{-1}(V - \sigma(u - Du \cdot x))$ and $I = Id + \frac{x \otimes x}{1 - |x|^2}$, the first fundamental form of the upper unit half sphere, then equation can be rewritten as $\det(IF - D^2u) = h$ for $k < 1$. The weak solutions for this equations can be defined through the theory of optimal transfers [1] (see [7] for the discussion of such problems). The higher regularity of the weak solutions depends on the properties of the function F. More precisely we have

Theorem 2 If $k < 1$ (i.e. when the support functions are hyperboloids of revolution touching Γ from below) and (f, Ω) and (g, Ω^*) satisfy to the regularity assumptions as in [3], [5] and [6] then F is strictly concave as a function of the gradient and the weak solutions are locally (globally) smooth provided f, g are positive smooth functions and $\Omega, \Omega^* \subset S^+_n$.

If $k > 1$ (i.e. when the support functions are ellipsoids of revolution touching Γ from above) then F is not convex in gradient and the weak solutions may not be C^1 even for smooth positive intensities f, g.

2 The main formulas

In this section we derive a simple and useful formula for Y. We use it to compute the Jacobian determinant in the next section.
2.1 The mapping Y

Let Y be the unit direction of the refracted ray. First let us derive a formula for Y, using angles α and β (see figure 1). Since X, Y and outward unit vector γ lie in the same plane, we have

$$Y = C_1X + C_2\gamma$$

for two unknowns, C_1 and C_2 depending on X. If one takes the scalar product of Y with γ and then with X, then

$$\begin{cases}
\cos \beta = C_1 \cos \alpha + C_2 \\
\cos (\alpha - \beta) = C_1 + C_2 \cos \alpha.
\end{cases}$$

Multiplying the first equation by $\cos \alpha$ and subtracting from the second one we infer

$$C_1 = \frac{\sin \beta}{\sin \alpha}, \quad C_2 = \cos \beta - C_1 \cos \alpha.$$

Introduce $k = n_1/n_2$, hence we find that $C_1 = k$ and $C_2 = \cos \beta - k \cos \alpha$, that is

$$Y = kX + (\cos \beta - k \cos \alpha)\gamma. \quad (2.1)$$

We can further manipulate (2.1). Note that

$$n_2^2 - n_2^2 \cos^2 \beta = n_2^2 \sin^2 \beta = n_1^2 \sin^2 \alpha = n_1^2 - n_1^2 \cos^2 \alpha.$$

Dividing the both sides by n_2^2 we obtain

$$k^2 \cos^2 \alpha = (k^2 - 1) + \cos^2 \beta.$$
Returning to (2.1) we get
\[Y = kX + \left(\sqrt{k^2 \cos^2 \alpha - (k^2 - 1)} - k \cos \alpha \right) \gamma = \] (2.2)
\[= k \left(X + \sqrt{(X \cdot \gamma)^2 - \sigma - X \cdot \gamma} \right), \]
where \(\sigma = (k^2 - 1)/k^2 \). From [2] we have
\[\gamma = -\frac{D\rho - X(\rho + D\rho \cdot x)}{\sqrt{\rho^2 + |D\rho|^2 -(D\rho \cdot x)^2}} \]
where \(X = (x, \sqrt{1 - |x|^2}), D\rho = (\rho_1, \ldots, \rho_n) \). It is convenient to work with a new function \(u = \rho^{-1} \). By direct computation we have that
\[\gamma = \frac{Du + X(u - Du \cdot x)}{\sqrt{u^2 + |Du|^2 -(Du \cdot x)^2}}. \]
Introduce \(b = u^2 + |Du|^2 -(Du \cdot x)^2 \), then
\[Y = k \left(X + \sqrt{(X \cdot \gamma)^2 - \sigma - X \cdot \gamma} \right) \]
\[= k \left(X + \sqrt{\frac{u^2}{b} - \sigma - \frac{u}{\sqrt{b}} \gamma} \right) \]
\[= k \left(X + b^{-1}\sqrt{u^2 - \sigma b - u}[Du + X(u - Du \cdot x)] \right), \]
where we used the fact that
\[X \cdot \gamma = \frac{u}{\sqrt{u^2 + |Du|^2 -(Du \cdot x)^2}} > 0. \]
In particular it follows from the previous formula that
\[Y_{n+1} = kX_{n+1}(1 - \frac{\sigma}{V}(u - (Du \cdot x))). \] (2.3)

2.2 The Jacobian determinant

Let \(dX \) and \(dY \) be respectively the area elements corresponding to \(\Omega \) and \(\Omega^* \). Then \(dx = X_{n+1}dX \). Recall that \(Y \) is a unit vector and denote \(y = (Y_1, Y_2, \ldots, Y_n, 0) \in \Omega^*_0 \), where \(\Omega^*_0 \) is the orthogonal projection of \(\Omega^* \) onto hyperplane \(x_{n+1} = 0 \) so we conclude \(dy = Y_{n+1}dY \). Hence if we consider \(y \) to be a mapping from \(\Omega_0 \) to \(\Omega^*_0 \) then \(dy = |\det Dy|dx \).

For perfect refractor \(\Gamma \) we have the energy balance condition
\[\int_E f(X)dX = \int_{Y(E)} g(Y)dY, \forall \text{ measurable } E \subset \Omega. \]
Thus we obtain \(f dX = g dY \) or
\[J = \frac{X_{n+1}}{Y_{n+1}} |\det Dy| = \frac{f(X)}{g(Y)} = \frac{dX}{dY}. \] (2.4)
Thus to find the Jacobian determinant J it is enough to compute $|\det Dy|$. Before starting our computations let us note, that if $\mu = \text{Id} + C\xi \otimes \eta$ for some constant C and for any two vectors $\xi, \eta \in \mathbb{R}^n$, then one has

$$\mu^{-1} = \text{Id} - \frac{C\xi \otimes \eta}{1 + C(\xi \cdot \eta)}, \quad \det \mu = 1 + C(\xi \cdot \eta). \quad (2.5)$$

3 Proofs of Theorems 1-2

The main goal of this section is to prove the following

Proposition 1 If Y is given as above and

$$y = k \left[x - \sigma \frac{V}{V} (Du + x(u - Du \cdot x)) \right],$$

then

$$Dy = k\sigma \mu \left[\text{Id} - x \otimes x \right] \left\{ (\text{Id} + \frac{x \otimes x}{1 - |x|^2}) \frac{V - \sigma (u - Du \cdot x)}{\sigma} - D^2 u \right\},$$

where $b = u^2 + |Du|^2 - (Du \cdot x)^2, V = \sqrt{u^2 - \sigma b + u}$ and μ is defined by (3.2).

Proof. Introduce $V = \sqrt{u^2 - \sigma b + u}, z = Du + x(u - Du \cdot x)$. Using these notations one can rewrite

$$y = k[x - \sigma \frac{V}{V} z].$$

By a direct computation we have

$$\frac{y_{ij}}{k} = \delta_{ij} - \frac{\delta}{V} (z_{j} - \frac{z^i V_j}{V}).$$

Differentiating z^i and V with respect x_j yields

$$z_{j}^i = u_{ij} - x_i x_m u_{m,j} + \delta_{ij}(u - Du \cdot x),$$

$$V_j = pu_{ij} - q(u_m - (Du \cdot x)x_m)u_{mj},$$

where

$$p = \frac{V - \sigma(u - Du \cdot x)}{V - u},$$
$$q = \frac{\sigma}{V - u}.$$
Then
\[
\frac{Dy}{k} = \text{Id} - \sigma V \left[(\text{Id} - x \otimes x)D^2u + \text{Id}(u - Du \cdot x) - \frac{p}{V} z \otimes Du \right]
+ \frac{q}{V} z \otimes (Du - (Du \cdot x)D^2u) \tag{3.1}
\]
\[
= \left[1 - \frac{\sigma}{V} (u - Du \cdot x) \right] \left[\text{Id} + Az \otimes Du \\
- B \left\{ (Id - x \otimes x) + \frac{q}{V} z \otimes (Du - (Du \cdot x)) \right\} D^2u \right],
\]
where we set
\[
A = \frac{\sigma p}{Vz} - \frac{\sigma}{V(u - Du \cdot x)} = \frac{\sigma}{V(V - u)},
\]
\[
B = \frac{\sigma}{1 - \frac{\sigma}{V}(u - Du \cdot x)} = \frac{\sigma}{V - \sigma(u - Du \cdot x)}.
\]

Then using Lemma 1 (see below) we finally obtain
\[
\frac{Dy}{k} = \left[1 - \frac{\sigma}{V} (u - Du \cdot x) \right] B\mu \left[Id - x \otimes x \right] \left\{ (Id + \frac{x \otimes x}{1 - |x|^2}) \frac{1}{B} - D^2u \right\}
= \frac{\sigma}{V} \mu [Id - x \otimes x] \left\{ (Id + \frac{x \otimes x}{1 - |x|^2}) \frac{1}{B} - D^2u \right\}
= \frac{\sigma}{V} \mu [Id - x \otimes x] \left\{ \frac{V - \sigma(u - Du \cdot x)}{\sigma} (Id + \frac{x \otimes x}{1 - |x|^2}) - D^2u \right\}.
\]

Hence to finish the proof of Proposition 1 it remains to prove

Lemma 1 Let \(\mu = \text{Id} + Az \otimes Du \), then
\[
\mu^{-1} \left\{ (Id - x \otimes x) + \frac{q}{V} z \otimes (Du - (Du \cdot x)x) \right\} = Id - x \otimes x, \tag{3.2}
\]
\[
det \mu = \frac{Y_{n+1}}{kX_{n+1}} \frac{u}{\sqrt{u^2 - \sigma b}}. \tag{3.3}
\]

Proof. First by (2.5)
\[
\mu^{-1} = \text{Id} - \frac{Az \otimes Du}{1 + A(z \cdot Du)}.
\]

Let \(\mathcal{N} = \left\{ (Id - x \otimes x) + \frac{q}{V} z \otimes (Du - (Du \cdot x)x) \right\} \), then by a direct computation we have
\[
\mu^{-1} \mathcal{N} = (Id - x \otimes x) + \frac{q}{V} z \otimes (Du - (Du \cdot x)x) - \frac{Az \otimes Du}{1 + A(z \cdot Du)}
+ \frac{A}{1 + A(z \cdot Du)}[(Du \cdot x)z \otimes x - \frac{q}{V}(Du \cdot z)z \otimes (Du - (Du \cdot x)x)].
\]
Let us sum up all \otimes products with z, the resulting vector is

$$
\frac{q}{V}(Du - (Du \cdot x)x) + \frac{A}{1 + A(z \cdot Du)} \left\{ - Du + (Du \cdot x)x - \frac{q}{V}(Du \cdot z)(Du - (Du \cdot x)x) \right\} = \left\{ \frac{q}{V} - \frac{A}{1 + A(z \cdot Du)} \left(1 + \frac{q}{V} Du \cdot z \right) \right\} (Du - (Du \cdot x)x).
$$

On the other hand

$$
\frac{q}{V} - \frac{A}{1 + A(z \cdot Du)} (1 + \frac{q}{V} Du \cdot z) = \frac{1}{1 + A(z \cdot Du)} [\frac{q}{V} - A].
$$

Using definitions of q, p and A we obtain that

$$
\frac{q}{V} - A = \frac{\sigma}{V(V - u)} - \frac{\sigma p}{V - \sigma(u - Du \cdot x)} = \frac{\sigma}{V} \left\{ \frac{1}{V - u} - \frac{V - \sigma(u - Du \cdot x)}{V - u} \right\} = 0.
$$

To prove (3.3) we notice that $A = \frac{\sigma}{V(V - u)}$. Then using (2.5) and $V = \sqrt{u^2 - \sigma b + u}$ we have

$$
det \mu = 1 + \frac{\sigma}{V(V - u)} [Du]^2 + u(Du \cdot x) - (Du \cdot x)^2
$$

$$
= \frac{1}{V(V - u)} [uV - u^2 \sigma + \sigma u(Du \cdot x)]
$$

$$
= \frac{u}{V - u} \left\{ 1 - \frac{\sigma}{V}(u - (Du \cdot x)) \right\}
$$

and (3.3) follows from (2.3).

3.1 Ellipsoids and hyperboloids of revolution

In this section we show that $W = IF - D^2 u \equiv 0$ for $u = \frac{1}{C}(1 - \varepsilon(\ell \cdot X))$, that is when $\rho = 1/u$ is the radial graph of ellipsoid or hyperboloid of revolution. To fix ideas we assume that $\ell = e_{n+1}$. Thus $u = \frac{1}{C}(1 - \varepsilon X_{n+1})$. It is enough to show that $B = CX_{n+1}/\varepsilon$. By direct computation

$$
b = \frac{1}{C^2}(1 - 2\varepsilon X_{n+1} + \varepsilon^2)
$$

$$
u^2 - \sigma b = \frac{\varepsilon^2}{C^2} (X_{n+1}^2 - \varepsilon^2).
$$

Therefore $V = (1 - \varepsilon^2)/C$, which implies that

$$
B = \frac{\sigma}{V - \sigma(u - Du \cdot x)} = \frac{CX_{n+1}}{\varepsilon}.
$$
3.2 Proof of Theorem 1

From Proposition 1, Lemma 1 and (2.5) we have that

\[
\det D_y = \left(k^{\sigma} \right)^n \det \mu \det (Id - x \otimes x) \det W
= \left(k^{\sigma} \right)^n \frac{Y_{n+1}}{k X_{n+1}} \frac{u}{\sqrt{u^2 - \sigma b}} (1 - |x|^2) \det W
\]

where \(W = IF - D^2 u \) i.e.

\[
W = \frac{V - \sigma (u - Du \cdot x)}{\sigma} (Id + \frac{x \otimes x}{1 - |x|^2}) - D^2 u.
\]

Notice that if \(\Gamma \) is smooth and has support hyperboloids from inside at each point then \(W \geq 0 \) and \(W \leq 0 \) if \(\Gamma \) has support ellipsoids from outside. Then from (2.4) the Theorem 1 follows.

3.3 Proof of Theorem 2

The equation (1.4) is generalized Monge-Ampère equation. To obtain smoothness of the solution, one needs to show, that \(F = \frac{V - \sigma (u - Du \cdot x)}{\sigma} \) is strictly concave in gradient. This is a necessary condition, called A3 and first introduced in [3], in order to obtain \(C^2 \) a priori estimates. It turns out that if \(\sigma < 0 \), i.e. when support functions are hyperboloids of revolution, then \(F \) is strictly concave in gradient. Recall that \(V = \sqrt{u^2 - \sigma b} + u \), hence it is enough to show that \(\sqrt{u^2 - \sigma b} \) is convex in gradient. Let \(\xi \) be the dummy variable for \(Du \), then we have

\[
\frac{\partial}{\partial \xi_k} \sqrt{u^2 - \sigma b} = -\frac{\sigma}{\sqrt{u^2 - \sigma b}} (\xi_k - (\xi \cdot x)x_k),
\]

\[
\frac{\partial^2}{\partial \xi_k \partial \xi_l} \sqrt{u^2 - \sigma b} = -\frac{\sigma}{\sqrt{u^2 - \sigma b}} \left\{ \delta_{lk} - x_k x_l + \frac{(\xi_k - (\xi \cdot x)x_k)(\xi_l - (\xi \cdot x)x_l)}{u^2 - \sigma b} \right\}.
\]

On the other hand \(b = u^2 + |\xi|^2 - (\xi \cdot x)^2 \), which is strictly convex function of \(\xi \), provided \(|x| < 1 \). For any \(\eta \in \mathbb{R}^n \) we have

\[
-(u^2 - \sigma b)^2 \frac{\partial^2 F}{\partial \xi_k \partial \xi_l} \eta_k \eta_l = -(u^2 - \sigma b)^2 \frac{1}{\sigma} \sum_{k,l} \frac{\partial^2 \sqrt{u^2 - \sigma b}}{\partial \xi_k \partial \xi_l} \eta_k \eta_l
\]

\[
= (u^2 - \sigma b)(|\eta|^2 - (\eta \cdot x)^2) + \sigma |\xi \cdot \eta - (\xi \cdot \eta)(\eta \cdot \xi)|^2
\]

substituting the value of \(b = |\xi|^2 - (\xi \cdot x)^2 + u^2 \) we have

\[
= u^2 (1 - \sigma)(|\eta|^2 - (\eta \cdot x)^2) + \sigma \left\{ -|\xi|^2 |\eta|^2 + |\xi|^2 (\eta \cdot x)^2 + |\eta|^2 (\xi \cdot x)^2 + (\xi \cdot \eta)^2 - 2(\xi \cdot \eta)(\xi \cdot x)(\eta \cdot x) \right\}.
\]

The first term is nonnegative since \(|x| < 1 \) and \((\eta \cdot x) \leq |\eta| |x| < |\eta| \). Recall that \(\sigma < 0 \). Hence it is enough to show that

\[
-|\xi|^2 |\eta|^2 + |\xi|^2 (\eta \cdot x)^2 + |\eta|^2 (\xi \cdot x)^2 + (\xi \cdot \eta)^2 - 2(\xi \cdot \eta)(\xi \cdot x)(\eta \cdot x) < 0.
\]

(3.5)
This expression is homogeneous in η and ξ thus we may assume that $|\xi| = |\eta| = 1$. Furthermore let x' be the orthogonal projection of x on the two dimensional space spanned by ξ and η. Then (3.5) is equivalent to

$$(\eta \cdot x')^2 + (\xi \cdot x')^2 + (\xi \cdot \eta)^2 - 2(\xi \cdot \eta)(\xi \cdot x')(\eta \cdot x') - 1 < 0.$$

If α, β and γ are the angles between respectively η and x', ξ and x' and η and ξ then $\cos \gamma = \cos(\alpha \pm \beta)$. Thus we have

$$|x'|^2(\cos^2 \alpha + \cos^2 \beta - 2 \cos \alpha \cos \beta \cos \gamma) + \cos^2 \gamma - 1 <$$

$$+ (\cos^2 \alpha + \cos^2 \beta - 2 \cos \alpha \cos \beta \cos \gamma) + \cos^2 \gamma - 1 = 0.$$

From here the proof of Theorem 1 follows from [3] and [6].

References

