Tauberian Theorems by Weighted Summability Method

Valdete Loku and Naim L. Braha

Abstract. In this paper, we will show a new Tauberian theorems defined by weighted N"orlund-Ces´aro summability method.

Key Words: Weighted N"orlund-Ces´aro summability; One-sided and two-sided Tauberian conditions.

Mathematics Subject Classification 2010: 40G15, 41A36.

Introduction

Let $\sum_{n=0}^{\infty} a_n$ be an infinite series with sequence of partial sums (s_n). The $(C,1)$ (see [3],page 7) transform is defined as the n-th partial sum of $(C,1)$ summability and is given by

$$\frac{s_0 + s_1 + \cdots + s_n}{n+1} = \frac{1}{n+1} \sum_{k=0}^{n} s_k \to s \quad \text{as} \quad n \to \infty,$$

then the infinite series $\sum_{n=0}^{\infty} a_n$ is summable to the definite number s by $(C,1)$ method.

Let $\{p_n\}$ be a non-negative, non increasing sequence such that

$$P_n = p_0 + p_1 + \cdots + p_n \to \infty, \quad \text{as} \quad n \to \infty, \quad P_{-1} = p_{-1} = 0.$$

Then the series $\sum_{n=0}^{\infty} a_n$ is said to be almost N"orlund summable to S (or (N,p_n)-summable) if

$$\frac{1}{P_n} \sum_{v=0}^{n} p_{n-v} s_v \to S,$$

as $n \to \infty$.

The product of (N,p_n) summability and $(C,1)$ summability defines $(N,p_n)(C,1)$ summability and we denote it by $N^p_{n}C_n^1$. Thus if

$$N^p_{n}C_n^1 = \frac{1}{P_n} \sum_{k=0}^{n} p_k \frac{1}{k+1} \sum_{v=0}^{k} s_v \to s \quad \text{as} \quad n \to \infty,$$
where N^p_n denotes the (N,p_n) transform of s_n and C^1_n denotes the $(C,1)$ transform of s_n, then the series $\sum_{n=0}^{\infty} a_n$ is said to be summable by $(N,p_n)(C,1)$ means or summable $(N,p_n)(C,1)$ to a definite number s. The (N,p_n) is a regular method of summability.

$$s_n \to s \Rightarrow C^1_n(s_n) = \frac{1}{n+1} \sum_{k=0}^{n} s_k \to s, \quad \text{as } n \to \infty,$$

C^1_n method is regular,

$$N^p_n(C^1_n(s_n)) = N^p_nC^1_n \to s, \quad \text{as } n \to \infty,$$

$N^p_nC^1_n$ method is regular.

We say that the sequence (x_n) is Nörlund-Cesàro summable to L by the weighted mean method determined by the sequences (p_n), or briefly $(N,p_n)(C,1)$—summable if

$$\lim_{n} N^p_nC^1_n(x) = L. \quad (3)$$

In this case we will write $L = N^p_nC^1_n - \lim_{n} x_n$. We denote by $N^p_nC^1_n$ the set of all sequences which are summable $N^p_nC^1_n$. If

$$\lim_{n} x_n = a \quad (4)$$

eexists, then (3) also exists. However, the converse is not always true. We can show by the following example

Example 1 Let us consider that $p_n = 1$ for all $n \in \mathbb{N}$. Also we define the following sequence $x = (x_k) = (-1)^k$, then we have

$$\frac{1}{n+1} \sum_{k=0}^{n} \frac{1}{k+1} \sum_{v=0}^{k} (-1)^v \to 0 \quad \text{as } n \to \infty.$$

And as we know $x = (x_k)$, is not convergent.

Notice that (3) may imply (4) under a certain condition, which is called a Tauberian condition. Any theorem which states that convergence of sequences follows from its $(N,p_n)(C,1)$—summability and some Tauberian condition is said to be a Tauberian theorem for the $(N,p_n)(C,1)$—summability method.

The theory of Tauberian is extensively studied by many authors([1], [2], [4], [5], [7]). In this paper our aim is to find conditions (so-called Tauberian) under which the converse implication holds, for defined convergence. Exactly, we will prove under which conditions convergence of sequences (x_n), follows from $N^p_nC^1_n$—convergence. This method generalized method given in [5] and [7], it is shown on the following example.

Example 2 Let us consider that $x_n = n$, then $N^p_nC^1_n$ reduces to the Nörlund method defined in [3] and [7].
1 Main results

In this paper we will generalize Hardy’s Tauberian theorem (see [3]) and obtain new Tauberian theorems for the weighted \((N, p_n)(C, 1)\)–summability method. Let \(u = (u_n)\) be a sequence of real numbers. The classical control modulo of the oscillatory behavior of \((u_n)\) is denoted by \(\omega^{(0)}_n(u) = n\Delta u_n = n(u_n - u_{n-1})\). The general control modulo of the oscillatory behavior of order 1 of \((u_n)\) is defined by

\[
\omega^{(1)}_n(u) = \omega^{(0)}_n(u) - \sigma^{(1)}_n(\omega^{(0)}_n(u)),
\]

where \(\sigma^{(1)}_n(u) = \frac{1}{n+1} \sum_{k=0}^n u_k\). And identity

\[
u_n - \sigma^{(1)}_n(u) = V^{(0)}_n \Delta u,
\]

where \(V^{(0)}_n \Delta u = \frac{1}{n+1} \sum_{k=0}^n k \Delta u_k\), is known as Kronecker identity.

In our case the above definitions are as follows:

\[
\omega^{(1)}_{n,p}(u) = \omega^{(0)}_{n,p}(u) - \sigma^{(1)}_{n,p}(\omega^{(0)}_{n,p}(u)),
\]

where \(\sigma^{(1)}_{n,p}(u) = \frac{1}{P_n} \sum_{k=0}^n p_k \frac{1}{k+1} \sum_{v=0}^k u_v\).

We will start from theorem of Hardy,

Theorem 1 ([3]) If \((x_n)\) is \((N, p)\) summable to \(x\) and

\[
\omega^{(0)}_{n,p}(x) = 0(1)
\]

then \((x_n)\) converges to \(x\).

Theorem 2 ([7]) If \((\sigma^{(1)}_{n,p}(u))\) is \((N, p)\) summable to \(s\) and the condition

\[
\omega^{(m)}_{n,p}(u) = 0(1)
\]

holds, then \((u_n)\) converges to \(s\).

Now we are ready to formulate our results which are generalization of the result given above.

Theorem 3 If

\[
\liminf \frac{P_{t_n}}{P_n} > 1, \quad t > 1 \quad (5)
\]

where \(t_n\), denotes the integer parts of the \([t \cdot n]\) for every \(n \in \mathbb{N}\), and let \((x_k)\) be a sequence of real numbers which converges to \(L\), via \((N, p_n)(C, 1)\)–
summability method. Then \((x_k)\) is convergent to the same number \(L\) if and only if the following two conditions holds:

\[
\sup_{t>1} \liminf_{n} \frac{1}{P_{t_n} - P_n} \sum_{j=n+1}^{t_n} p_j \frac{1}{j+1} \sum_{v=0}^{j} (x_v - x_n) \geq 0 \tag{6}
\]

and

\[
\sup_{0<t<1} \liminf_{n} \frac{1}{P_n - P_{t_n}} \sum_{j=t_n+1}^{n} p_j \frac{1}{j+1} \sum_{v=0}^{j} (x_n - x_v) \geq 0. \tag{7}
\]

In what follows we will show some auxiliary lemmas which are needful in the sequel.

Lemma 1 Condition given by relation (5) is equivalent to this one:

\[
\liminf_{n} \frac{P_n}{P_{t_n}} > 1, \quad 0 < t < 1. \tag{8}
\]

Proof. We omit it, because it is similar to the lemma 1, given in \[6\]. □

Proposition 1 Let us suppose that relation (5) is satisfied and let \(x = (x_k)\) be a sequence of complex numbers which is Nörlund-Cesàro summable to \(L\). Then

\[
\lim_{n} \frac{1}{P_{t_n} - P_n} \sum_{j=n+1}^{t_n} p_j \frac{1}{j+1} \sum_{v=0}^{j} x_j = L, \quad \text{for } t > 1 \tag{9}
\]

and

\[
\lim_{n} \frac{1}{P_n - P_{t_n}} \sum_{j=t_n+1}^{n} p_j \frac{1}{j+1} \sum_{v=0}^{j} x_j = L, \quad \text{for } 0 < t < 1. \tag{10}
\]

Proof. (I) Let us consider the case where \(t > 1\). Then we obtain

\[
\frac{1}{P_{t_n} - P_n} \sum_{k=n+1}^{t_n} p_k \frac{1}{k+1} \sum_{v=0}^{k} x_v =
\]

\[
= \frac{P_{t_n}}{P_{t_n} - P_n} \sum_{k=0}^{t_n} p_k \frac{1}{k+1} \sum_{v=0}^{k} x_v - \frac{P_n}{P_{t_n} - P_n} \sum_{k=0}^{n} p_k \frac{1}{k+1} \sum_{v=0}^{k} x_v
\]

\[
= \frac{1}{P_{t_n}} \sum_{k=0}^{t_n} p_k \frac{1}{k+1} \sum_{v=0}^{k} x_v + \frac{P_n}{P_{t_n} - P_n} \times
\]

\[
\times \left[\frac{1}{P_{t_n}} \sum_{k=0}^{t_n} p_k \frac{1}{k+1} \sum_{v=0}^{k} x_v - \frac{1}{P_n} \sum_{k=0}^{n} p_k \frac{1}{k+1} \sum_{v=0}^{k} x_v \right]. \tag{11}
\]
By relation (5) we get
\[\limsup_{n \to \infty} \frac{P_n}{P_{tn} - P_n} = \frac{1}{\liminf_{n \to \infty} \frac{P_{tn}}{P_n} - 1} < \infty. \]

Now relation (9) follows from relation (11) and assumed convergence of \(N_{pC_n^1}. \)

(II) In this case we have that \(0 < t < 1. \) Then

\[
\frac{1}{P_n - P_{tn}} \sum_{k=t_n+1}^{n} p_k \frac{1}{k+1} \sum_{v=0}^{k} x_v =
\]

\[
\frac{P_n}{P_n - P_{tn}} \sum_{k=0}^{n} p_k \frac{1}{k+1} \sum_{v=0}^{k} x_v - \frac{P_{tn}}{P_n - P_{tn}} \sum_{k=0}^{t_n} p_k \frac{1}{k+1} \sum_{v=0}^{k} x_v
\]

\[= \frac{1}{P_n} \sum_{k=0}^{n} p_k \frac{1}{k+1} \sum_{v=0}^{k} x_v + \]

\[+ \frac{P_n}{P_n - P_{tn}} \left[\frac{1}{P_n} \sum_{k=0}^{n} p_k \frac{1}{k+1} \sum_{v=0}^{k} x_v - \frac{1}{P_{tn}} \sum_{k=0}^{t_n} p_k \frac{1}{k+1} \sum_{v=0}^{k} x_v \right]. \] (12)

Now relation (10), follows from relations (12), (8) and assumed convergence of \(N_{pC_n^1}. \) □

Proof of Theorem 3

Proof. Necessity. Let us suppose that \(\lim_k x_k = L, \) and \(\lim_n N_{pC_n^1}(x) = L. \)

For every \(t > 1 \) following Proposition 1 we have

\[
\lim_n \frac{1}{P_n - P_{tn}} \sum_{k=n+1}^{t_n} p_k \frac{1}{k+1} \sum_{v=0}^{k} (x_v - x_n) =
\]

\[
\lim_n \left\{ \left(\frac{1}{P_n - P_{tn}} \sum_{k=n+1}^{t_n} p_k \frac{1}{k+1} \sum_{v=0}^{k} x_v \right) - x_n \right\} = 0.
\]

In case where \(0 < t < 1, \) we find that

\[
\lim_n \frac{1}{P_n - P_{tn}} \sum_{k=t_n+1}^{n} p_k \frac{1}{k+1} \sum_{v=0}^{k} (x_n - x_v) =
\]

\[
\lim_n \left\{ x_n - \left(\frac{1}{P_n - P_{tn}} \sum_{k=t_n+1}^{n} p_k \frac{1}{k+1} \sum_{v=0}^{k} x_v \right) \right\} = 0.
\]
Sufficient: Assume that conditions (6) and (7) are satisfied. In what follows we will prove that $\lim_{n} x_n = L$. Given any $\epsilon > 0$, by relation (6) we can choose $t_1 > 0$ such that

$$
\liminf_{n} \frac{1}{P_{t_n1} - P_n} \sum_{j=n+1}^{t_n1} p_j \frac{1}{j+1} \sum_{v=0}^{j} (x_v - x_n) \geq -\epsilon, \quad (13)
$$

where $t_{n_1} = [t_1 \cdot n]$. By the assumed summability N_{p,C_1}^n of (x_n), Proposition 1 for $t > 1$ and taking into account relation (13), we obtain

$$
\limsup_{n} x_n \leq L + \epsilon. \quad (14)
$$

On the other hand, if $0 < t < 1$, for every $\epsilon > 0$, we can choose $0 < t_2 < 1$ such that

$$
\liminf_{n} \frac{1}{P_{n} - P_{t_{n_2}}} \sum_{j=t_{n_2}+1}^{n} p_j \frac{1}{j+1} \sum_{v=0}^{j} (x_n - x_j) \geq -\epsilon, \quad (15)
$$

where $t_{n_2} = [t_2 \cdot n]$. By the assumed summability N_{p,C_1}^n of (x_n), Proposition 1 for $0 < t < 1$ and relation (15), we get

$$
\liminf_{n} x_n \geq L - \epsilon. \quad (16)
$$

Since $\epsilon > 0$ is arbitrary, combining relations (14) and (16) yields the convergence

$$
\lim_{n} x_n = L.
$$

□

In the next result we will consider the case where $x = (x_n)$ is a sequence of complex numbers.

Theorem 4 Let us suppose that relation (5) is satisfied. And (x_n) be a sequence of complex numbers, which is N_{p,C_1}^n-summable to L. Then (x_n) is convergent to the same number L if and only if the following two conditions holds:

$$
\inf_{t>1}\limsup_{n} \left| \frac{1}{P_{n} - P_{t_n}} \sum_{j=n+1}^{t_n} p_j \frac{1}{j+1} \sum_{v=0}^{j} (x_v - x_n) \right| = 0 \quad (17)
$$

and

$$
\inf_{0<t<1}\limsup_{n} \left| \frac{1}{P_{n} - P_{t_n}} \sum_{j=t_{n}+1}^{n} p_j \frac{1}{j+1} \sum_{v=0}^{j} (x_n - x_v) \right| = 0. \quad (18)
$$
Proof. Necessity: Let us suppose that relations (3) and (4) are satisfied. Than by Proposition 1, we get relation (17), for $t > 1$ and relation (18), for $0 < t < 1$.

Sufficient: Let us suppose that relation (5), (3) and (17) are satisfied. Then for any given $\epsilon > 0$, there exists a $t_3 > 1$ such that

$$\limsup_n \left| \frac{1}{P_{t_{n3}} - P_n} \sum_{j=n+1}^{t_{n3}} p_k \frac{1}{j+1} \sum_{v=0}^{j} (x_v - x_n) \right| \leq \epsilon,$$

where $t_{n3} = [t_3 \cdot n]$. Taking into account fact that (x_n) is $N^pC^1_n$ summable we get the following estimation

$$\limsup_n |L - x_n| \leq \limsup_n \left| L - \frac{1}{P_{t_{n3}} - P_n} \sum_{j=n+1}^{t_{n3}} p_k \frac{1}{j+1} \sum_{v=0}^{j} x_v \right| + \limsup_n \left| \frac{1}{P_{t_{n3}} - P_n} \sum_{j=n+1}^{t_{n3}} p_k \frac{1}{j+1} \sum_{v=0}^{j} (x_v - x_n) \right| \leq \epsilon.$$

Since $\epsilon > 0$ is arbitrary, we have $\lim_n x_n = L$. Second case is similar to the first one and we omit it. □

Remark 1 Theorem 2.3 is generalization of the theorem 2.2, because in the theorem 2.2 are given conditions for Tauberian theorem for Nörlund-Cesàro summability method $(N, p_n)(C, 0)$ and in theorem 2.3 are given conditions for Tauberian theorem for Nörlund-Cesàro summability method $(N, p_n)(C, 1)$.

Acknowledgment Author’s would like to thank referees for comments and remarks given in the paper.

References

Valdete Loku
Department of Management for Industry,
Street Rexhep Bistimi, University of Applied Sciences Ferizaj, 70000, Kosova
valdeteloku@gmail.com

N. L. Braha
Department of Mathematics and Computer Sciences,
Avenue Mother Teresa, No=5, University of Prishtina, 10000, Kosova
nbraha@yahoo.com

Please, cite to this paper as published in