Principal filters of some ordered \(\Gamma \)-semigroups

N. Kehayopulu and M. Tsingelis

Abstract. For an intra-regular or a left regular and left duo ordered \(\Gamma \)-semigroup \(M \), we describe the principal filter of \(M \) which plays an essential role in the structure of this type of \(po- \) \(\Gamma \)-semigroups. We also prove that an ordered \(\Gamma \)-semigroup \(M \) is intra-regular if and only if the ideals of \(M \) are semiprime and it is left (right) regular and left (right) duo if and only if the left (right) ideals of \(M \) are semiprime.

Key Words: ordered \(\Gamma \)-semigroup, filter, intra-regular, left regular

Mathematics Subject Classification 2000: 06F99 (20M99)

1 Introduction and prerequisites

Our aim is to describe the principal filters of intra-regular ordered \(\Gamma \)-semigroups and the principal filters of ordered \(\Gamma \)-semigroups which are both left regular and left duo. Croisot, who used the term “inversive” instead of “regular”, connects the matter of decomposition of a semigroup with the regularity and semiprime conditions [2]. A semigroup \(S \) is said to be left (resp. right) regular if for every \(a \in S \) there exists \(x \in S \) such that \(a = xa^2 \) (resp. \(a = a^2x \)). That is, if \(a \in Sa^2 \) (resp. \(a \in a^2S \)) for every \(a \in S \) which is equivalent to saying that \(A \subseteq A^2S \) (resp. \(A \subseteq SA^2 \)) for every \(A \subseteq S \). A semigroup \(S \) is said to be intra-regular if for every \(a \in S \) there exist \(x, y \in S \) such that \(a = xa^2y \). In other words, if \(a \in Sa^2S \) for every \(a \in S \) or \(A \subseteq SA^2S \) for every \(A \subseteq S \). For decompositions of an intra-regular, of a left regular or both left and right regular semigroup we refer to [1, 7]. The concepts of intra-regular ordered semigroup and of right regular ordered semigroup have been introduced in [3, 4] in which the decomposition of an intra-regular ordered semigroup into simple components and the decomposition of a right regular and right duo ordered semigroup into right simple components have been studied. The principal filter of \(S \) has a very simple form for both ordered and unordered case of \(\Gamma \)-semigroups, and it plays an essential role in their decomposition.
For the sake of completeness, let us first give the definition of a \(\Gamma \)-semigroup. In this paper we use the definition of \(\Gamma \)-semigroup introduced by Saha in [8]: Given two nonempty sets \(M \) and \(\Gamma \), \(M \) is called a \(\Gamma \)-semigroup if there exists a mapping \(M \times \Gamma \times M \rightarrow M \) \((a, \gamma, b) \rightarrow a\gamma b\) such that \((a\gamma b)\mu c = a\gamma (b\mu c) \) for every \(a, b, c \in M \) and every \(\gamma, \mu \in \Gamma \). An ordered \(\Gamma \)-semigroup (shortly, po-\(\Gamma \)-semigroup) is clearly a \(\Gamma \)-semigroup \(M \) with an order relation “\(\leq \)” on \(M \) such that \(a \leq b \) implies \(a\gamma c \leq b\gamma c \) and \(c\gamma a \leq c\gamma b \) for every \(c \in M \) and every \(\gamma \in \Gamma \). For a subset \(H \) of \(M \) we denote by \((H) \) the subset of \(M \) defined by

\[
(H) = \{t \in M \mid t \leq a \text{ for some } t \in H\}.
\]

We mention the properties we use in the paper: Clearly \(M = (M) \), and for any subsets \(A, B, C \) of \(M \), we have the following: \(A \subseteq (A) \); if \(A \subseteq B \), then \(A\Gamma C \subseteq B\Gamma C \) and \(C\Gamma A \subseteq C\Gamma B \); if \(A \subseteq B \), then \((A) \subseteq (B) \); \((A\Gamma B) \subseteq (A\Gamma B) \); \((A\Gamma B) = (A\Gamma B) \); if \(a \leq b \), then \(A\Gamma a \subseteq (A\Gamma b) \) and \(a\Gamma A \subseteq (b\Gamma A) \); \((A) = (A) \). Let us prove the last one: Since \(A \subseteq (A) \), we have \((A) \subseteq (A) \). Let now \(t \in (A) \). Then \(t \leq x \) for some \(x \in (A) \) and \(x \leq a \) for some \(a \in A \). Since \(t \in S \) and \(t \leq a \), where \(a \in A \), we have \(t \in (A) \). As one can easily see, the following are equivalent: (1) \(a \in A \) and \(S \ni b \leq a \), then \(b \in A \). (2) \(A \subseteq A \). (3) \(A = A \). A nonempty subset \(A \) of \(M \) is called a subsemigroup of \(M \) if, for every \(a, b \in A \) and every \(\gamma \in \Gamma \), we have \(a\gamma b \in A \), that is if \(A\Gamma A \subseteq A \). A nonempty subset \(A \) of \(M \) is called a left (resp. right) ideal of \(M \) if (1) \(M\Gamma A \subseteq A \) (resp. \(A\Gamma M \subseteq A \)) and (2) if \(a \in A \) and \(M \ni b \leq a \), then \(b \in A \) (equivalently \(A = A \)). It is called an ideal (or two-sided ideal) of \(M \) if it is both a left and right ideal of \(M \). Clearly every left (resp. right) ideal of \(M \) is a subsemigroup of \(M \). A po-\(\Gamma \)-semigroup \(M \) is called left (resp. right) duo if the left (resp. right) ideals of \(M \) are two-sided. A subsemigroup \(F \) of \(M \) is called a filter of \(M \) if (1) for every \(a, b \in M \) and every \(\gamma \in \Gamma \) such that \(a\gamma b \in F \), we have \(a \in F \) and \(b \in F \) and (2) if \(a \in F \) and \(M \ni b \geq a \), then \(b \in F \). For an element \(x \) of \(M \), we denote by \(N(x) \) the filter of \(M \) generated by \(x \) (that is, the least with respect to the inclusion relation filter of \(M \) containing \(x \)). A subset \(T \) of \(M \) is called semiprime if \(x \in M \) and \(\gamma \in \Gamma \) such that \(x\gamma x \in T \) implies \(x \in T \).

As we know, many results on semigroups (ordered semigroups) can be transferred into \(\Gamma \)-semigroups (po-\(\Gamma \)-semigroups) just putting a Gamma in the appropriate place, while for some other results the transfer needs subsequent technical changes. A \(\Gamma \)-semigroup \(M \) is called intra-regular if \(a \in M\Gamma a\Gamma M \) for every \(a \in M \), equivalently if \(A \subseteq M\Gamma A\Gamma M \) for every \(A \subseteq M \). It is called left (resp. right) regular if \(a \in M\Gamma a \Gamma a \Gamma M \) (resp. \(a \in a\Gamma a \Gamma M \)) for every \(a \in M \), equivalently if \(A \subseteq M\Gamma A \Gamma A \) (resp. \(A \subseteq A\Gamma A \Gamma M \)) for every \(a \in M \).
every $A \subseteq M$. An ordered Γ-semigroup M is called \textit{intra-regular} if for every $a \in M$ we have $a \in (MG\alpha\Gamma M]$, equivalently if for every $A \subseteq M$ we have $A \subseteq (MG\Gamma A\Gamma M]$. It is called \textit{left} (resp. \textit{right}) \textit{regular} if $a \in (MG\alpha\Gamma a]$ (resp. $(a \in (a\Gamma\alpha M]$) for every $a \in M$, equivalently if $A \subseteq (MG\Gamma A\Gamma M] \subseteq (a\Gamma\alpha M]$) for every $A \subseteq M$. Although some interesting results on Γ-semigroups are obtained using the definition of \textit{left} (resp. \textit{right}) regular or the definition of \textit{intra-regular} ordered Γ-semigroup mentioned above, with these definitions one fails to prove basic results of Γ-semigroups, such as to describe the filter of M generated by an element a of M, for example, which plays an essential role in the investigation. To overcome this difficulty, a new definition of \textit{intra-regular} and a new definition of left regular Γ-semigroups has been introduced in [5]. The \textit{intra-regular} Γ-semigroup has been defined as a Γ-semigroup M such that $a \in MG\alpha\gamma a\Gamma M$ for each $a \in M$ and each $\gamma \in \Gamma$ and the \textit{left} (resp. \textit{right}) \textit{regular} Γ-semigroup as a Γ-semigroup in which $a \in MG\alpha\gamma a$ (resp. $a \in a\gamma a\Gamma M$) for each $a \in M$ and each $\gamma \in \Gamma$ and it is proved that a Γ-semigroup M is left regular (in that new sense) if and only if it is a union of a family of left simple subsemigroups on M. And in [6] we gave some further structure theorems of this type of Γ-semigroups using that new definition and the form of their principal filters. But what happens in case of \textit{intra-regular} or in case of \textit{left regular} or for \textit{right regular} po-Γ-semigroups? Can we describe the form of their principal filters using some new definitions similar to the unordered case? The present paper gives the related answer.

2 On intra-regular ordered po-Γ-semigroups

We characterize here the intra-regular po-Γ-semigroups in terms of filters, and we prove that a po-Γ-semigroup M is \textit{intra-regular} if and only if the ideals of M are semiprime.

\textbf{Definition 1.} An ordered Γ-semigroup M is called \textit{intra-regular} if

$$x \in (MGx\gamma x\Gamma M]$$

for every $x \in M$ and every $\gamma \in \Gamma$.

\textbf{Definition 2.} (cf. also [3]) If M is an ordered Γ-semigroup, a subset A of M is called \textit{semiprime} if

$$a \in M \text{ and } \gamma \in \Gamma \text{ such that } a\gamma a \in A \text{ implies } a \in A.$$

\textbf{Theorem 3.} An ordered Γ-semigroup M is \textit{intra-regular} if and only if, for every $x \in M$, we have

$$N(x) = \{y \in M \mid x \in (MGy\Gamma M]\}.$$
Proof. \(\Rightarrow \). Let \(x \in M \) and \(T := \{ y \in M \mid x \in (M \Gamma y \Gamma M) \} \). Then we have the following:

(1) \(T \) is a nonempty subset of \(M \). Indeed: Take an element \(\gamma \in \Gamma \) \((\Gamma \neq \emptyset)\). Since \(M \) is intra-regular, we have

\[
x \in (M \Gamma x \gamma x \Gamma M) = ((M \Gamma x) \gamma x \Gamma M) \subseteq ((M \Gamma M) \Gamma x \Gamma M) \subseteq (M \Gamma x \Gamma M),
\]

so \(x \in T \).

(2) Let \(a, b \in T \) and \(\gamma \in \Gamma \). Then \(a \gamma b \in T \). Indeed: Since \(a \in T \), we have \(x \in (M \Gamma a \Gamma M) \). Since \(b \in T \), we have \(x \in (M \Gamma b \Gamma M) \). Since \(M \) is intra-regular, \(x \in M \) and \(\gamma \in \Gamma \), we have \(x \in (M \Gamma x \gamma x \Gamma M) \). Then we have

\[
x \in (M \Gamma x \gamma x \Gamma M) \subseteq (M \Gamma (M \Gamma b \Gamma M) \gamma (M \Gamma a \Gamma M) \Gamma M)
= (M \Gamma (M \Gamma b \Gamma M) \gamma (M \Gamma a \Gamma M) \Gamma M)
= (M \Gamma (M \Gamma M \gamma (M \Gamma a) \Gamma (M \Gamma M))
\subseteq (M \Gamma (b \Gamma M \gamma (M \Gamma a) \Gamma M)),
\]

so \(a \gamma b \in T \). Let now \(b \lambda u \gamma v \delta a \in b \Gamma \Gamma M \Gamma a \) for some \(u, v \in M, \lambda, \delta \in \Gamma \). Since \(M \) is intra-regular, for the elements \(b \lambda u \gamma v \delta a \in M \) and \(\gamma \in \Gamma \), we have

\[
b \lambda u \gamma v \delta a \in (M \Gamma (b \lambda u \gamma v \delta a) \gamma (b \lambda u \gamma v \delta a) \Gamma M)
= (M \Gamma (b \lambda u \gamma v) \delta (a \gamma b) \lambda (u \gamma v \delta a \Gamma M))
\subseteq (M \Gamma (a \gamma b) \Gamma M).
\]

(3) Let \(a, b \in M \) and \(\gamma \in \Gamma \) such that \(a \gamma b \in T \). Then \(a, b \in T \). Indeed: Since \(a \gamma b \in T \), we have \(x \in (M \Gamma (a \gamma b) \Gamma M) \subseteq (M \Gamma a \gamma (M \Gamma M)) \subseteq (M \Gamma a \Gamma M) \), so \(a \in T \). Since \(x \in (M \Gamma (a \gamma b) \Gamma M) \subseteq ((M \Gamma M) \gamma b \Gamma M) \subseteq (M \Gamma b \Gamma M) \), we have \(b \in T \).

(4) Let \(a \in T \) and \(M \ni b \geq a \). Then \(b \in T \). Indeed: Since \(a \in T \), we have \(x \in (M \Gamma a \Gamma M) \). Since \(a \leq b \), we have \(M \Gamma a \Gamma M \subseteq (M \Gamma b \Gamma M) \), then \((M \Gamma a \Gamma M) \subseteq (M \Gamma b \Gamma M) = (M \Gamma b \Gamma M) \). Then we have \(x \in (M \Gamma b \Gamma M) \), and \(b \in T \).
(5) Let F be a filter of M such that $x \in F$. Then $T \subseteq F$. Indeed: Let $a \in T$. Then $x \in (M\Gamma a \Gamma M)$, so $F \ni x \leq u\lambda(a\mu v)$ for some $u, v \in M$, $\lambda, \mu \in \Gamma$. Since F is a filter of M, $x \in F$ and $M \ni u\lambda(a\mu v) \geq x$, we have $u\lambda(a\mu v) \in F$. Since F is a filter of M, $u, a\mu v \in M$, $\lambda \in \Gamma$ and $u\lambda(a\mu v) \in F$, we have $a\mu v \in F$, again since F is a filter of M, $a, v \in M$ and $\mu \in \Gamma$, we have $a \in F$.

\iff. Let $x \in M$ and $\gamma \in \Gamma$. Then $x \in (M\Gamma x\gamma x\Gamma M)$. Indeed: Since $N(x)$ is a subsemigroup of M, $x \in N(x)$ and $\gamma \in \Gamma$, we have $x\gamma x \in N(x)$. Then, by hypothesis, we get $x \in (M\Gamma(x\gamma x)\Gamma M) = (M\Gamma x\gamma x\Gamma M)$, thus M is intra-regular. \square

Theorem 4. An ordered Γ-semigroup M is intra-regular if and only if the ideals of M are semiprime.

Proof. \implies. Let A be an ideal of M, $x \in M$ and $\gamma \in \Gamma$ such that $x\gamma x \in A$. Since M is intra-regular, we have

$$x \in (M\Gamma(x\gamma x)\Gamma M) \subseteq (M\Gamma A)\Gamma M \subseteq (A\Gamma M) \subseteq (A) = A,$$

then $x \in A$, and A is semiprime.

\iff. Let $x \in M$ and $\gamma \in \Gamma$. Then $x \in (M\Gamma x\gamma x\Gamma M)$. In fact: The set $(M\Gamma x\gamma x\Gamma M)$ is an ideal of M. This is because it is a nonempty subset of M, $M\Gamma(M\Gamma x\gamma x\Gamma M) \subseteq (M\Gamma(M\Gamma x\gamma x\Gamma M)) = (M\Gamma(M\Gamma x\gamma x\Gamma M)) \subseteq (M\Gamma x\gamma x\Gamma M)$, $(M\Gamma x\gamma x\Gamma M)\Gamma M \subseteq (M\Gamma x\gamma x\Gamma M)$, and $(M\Gamma x\gamma x\Gamma M) = (M\Gamma x\gamma x\Gamma M)$ (since this holds for any subset A of M). Since $(M\Gamma x\gamma x\Gamma M)$ is semiprime, $x\gamma x \in M\Gamma M \subseteq M$, $\gamma \in \Gamma$ and

$$(x\gamma x)\gamma(x\gamma x) = x\gamma(x\gamma x)\gamma x \in M\Gamma x\gamma x\Gamma M \subseteq (M\Gamma x\gamma x\Gamma M),$$

we have $x\gamma x \in (M\Gamma x\gamma x\Gamma M)$. Then, since $x \in M$, $\gamma \in \Gamma$ and $(M\Gamma x\gamma x\Gamma M)$ is semiprime, we have $x \in (M\Gamma x\gamma x\Gamma M)$, so M is intra-regular. \square

3 On left regular and left duo \textit{po}-\textit{\(\Gamma\)}-semigroups

First we notice that the left (and the right) regular \textit{po}-\textit{\(\Gamma\)}-semigroups are intra-regular. Then we characterize the \textit{po}-\textit{\(\Gamma\)}-semigroups which are both left regular and left duo in terms of filters and we prove that a \textit{po}-\textit{\(\Gamma\)}-semigroup M is left (resp. right) regular if and only if the left (resp. right) ideals of M are semiprime.

Definition 5. An ordered Γ-semigroup M is called left regular (resp. right regular) if

$$x \in (M\Gamma x\gamma x) \text{ (resp. } x \in (x\gamma x\Gamma M))$$
for every \(x \in M \) and every \(\gamma \in \Gamma \).

Proposition 6. Let \(M \) be an ordered \(\Gamma \)-semigroup. If \(M \) is left (resp. right) regular, then \(M \) is intra-regular.

Proof. Let \(M \) be left regular, \(x \in M \) and \(\gamma \in \Gamma \). Then we have
\[
\begin{align*}
x \in (M \Gamma x \gamma x) & \subseteq \left(M \Gamma (M \Gamma x \gamma x) \gamma x \right) \\
& = \left(M \Gamma (M \Gamma x \gamma x) \gamma x \right) \\
& \subseteq \left((M \Gamma M) \Gamma (x \gamma x) \Gamma M \right) \subseteq \left(M \Gamma x \gamma x \Gamma M \right),
\end{align*}
\]
thus \(M \) is intra-regular. Similarly, the right regular po-\(\Gamma \)-semigroups are intra-regular. \(\square \)

Theorem 7. An ordered \(\Gamma \)-semigroup \(M \) is left regular and left duo if and only if, for every \(x \in M \), we have
\[
N(x) = \{ y \in M \mid x \in (M \Gamma y) \}.
\]

Proof. \(\implies \). Let \(x \in M \) and \(T := \{ y \in M \mid x \in (M \Gamma y) \} \). Since \(M \) is left regular, we have \(x \in (M \Gamma x \gamma x) \subseteq \left((M \Gamma M) \Gamma x \right) \subseteq (M \Gamma x) \), so \(x \in T \), and \(T \) is a nonempty subset of \(M \).

Let \(a, b \in T \) and \(\gamma \in \Gamma \). Since \(x \in (M \Gamma a) \), \(x \in (M \Gamma b) \) and \(M \) is left regular, we have
\[
\begin{align*}
x \in (M \Gamma x \gamma x) & \subseteq \left(M \Gamma (M \Gamma b) \gamma (M \Gamma a) \right) \\
& = \left(M \Gamma (M \Gamma b) \gamma (M \Gamma a) \right) \\
& \subseteq \left(M \Gamma (b \gamma M \Gamma a) \right).
\end{align*}
\]
In addition, \(b \gamma M \Gamma a \subseteq (M \Gamma a \gamma b) \). Indeed: Let \(b \gamma u \mu a \in b \gamma M \Gamma a \), where \(u \in M \) and \(\mu \in \Gamma \). Since \(M \) is left regular, we have
\[
b \gamma u \mu a \in \left(M \Gamma (b \gamma u \mu a) \gamma (b \gamma u \mu a) \right) \subseteq \left(M \Gamma (a \gamma b) \Gamma M \right) = \left((M \Gamma a \gamma b) \Gamma M \right).
\]
Since \((M \Gamma a \gamma b) \) is a left ideal of \(M \), it is a right ideal of \(M \) as well, so \((M \Gamma a \gamma b) \Gamma M \subseteq (M \Gamma a \gamma b) \), then \(b \gamma u \mu a \in \left((M \Gamma a \gamma b) \right) = (M \Gamma a \gamma b) \). Hence we obtain
\[
x \in \left(M \Gamma (M \Gamma a \gamma b) \right) = \left(M \Gamma (M \Gamma a \gamma b) \right) \subseteq \left(M \Gamma (a \gamma b) \right),
\]
from which \(a \gamma b \in T \).

Let \(a, b \in M \) and \(\gamma \in \Gamma \) such that \(a \gamma b \in T \). Since \(x \in (M \Gamma a \gamma b) \subseteq (M \Gamma b) \), we have \(b \in T \). Besides, \(x \in (M \Gamma a \gamma b) \subseteq \left((M \Gamma a) \Gamma M \right) \). The set \((M \Gamma a) \) as a left ideal of \(M \), it is a right ideal of \(M \) as well, so \((M \Gamma a) \Gamma M \subseteq (M \Gamma a) \). Thus we have \(x \in \left((M \Gamma a) \right) = (M \Gamma a) \), and \(a \in T \).

Let \(a \in T \) and \(M \ni b \ni a \). Then we have \(x \in (M \Gamma a) \subseteq (M \Gamma b) \), so \(b \in T \).
Let \(F \) be a filter of \(M \) such that \(x \in F \) and let \(a \in T \). Since \(x \in (M\Gamma a) \), we have \(F \ni x \leq u\mu a \) for some \(u \in M, \mu \in \Gamma \). Since \(F \) is a filter of \(M \), we have \(u\mu a \in F \), and \(a \in F \).

\[\iff \]

Let \(x \in M \) and \(\gamma \in \Gamma \). Since \(x \in N(x) \) and \(N(x) \) is a subsemigroup of \(M \), we have \(x\gamma x \in N(x) \). By hypothesis, we get \(x \in (M\Gamma x\gamma x) \), so \(M \) is left regular. Let now \(A \) be a left ideal of \(M \), \(a \in A \), \(\gamma \in \Gamma \), and \(u \in M \).

Since \(a\gamma u \in N(a\gamma u) \) and \(N(a\gamma u) \) is a filter of \(M \), we have \(a \in N(a\gamma u) \). By hypothesis, we have \(a\gamma u \in (M\Gamma a) \subseteq (M\Gamma A) \subseteq (A) = A \). Thus \(A \) is right ideal of \(M \), and \(M \) is left duo. \(\square \)

The right analogue of Theorem 7 also holds, and we have

Theorem 8. An ordered \(\Gamma \)-semigroup \(M \) is right regular and right duo if and only if, for every \(x \in M \), we have

\[N(x) = \{ y \in M \mid x \in (y\Gamma M) \} \]

Theorem 9. An ordered \(\Gamma \)-semigroup \(M \) is left (resp. right) regular if and only if the left (resp. right) ideals of \(M \) are semiprime.

Proof. \(\implies \). Let \(M \) be left regular, \(A \) a left ideal of \(M \), \(x \in M \) and \(\gamma \in \Gamma \) such that \(x\gamma x \in A \). Then we have \(x \in (M\Gamma x\gamma x) \subseteq (M\Gamma A) \subseteq (A) = A \), so \(M \) is semiprime.

\(\iff \). Suppose the left ideals of \(M \) are semiprime and let \(x \in M \) and \(\gamma \in \Gamma \). Since \((M\Gamma x\gamma x) \) is a left ideal of \(M \), \(x\gamma x \in M \), \(\gamma \in \Gamma \) and \((x\gamma x)\gamma(x\gamma x) \in (M\Gamma x\gamma x) \), we have \(x\gamma x \in (M\Gamma x\gamma x) \). Again since \((M\Gamma x\gamma x) \) is semiprime, \(x \in M \), \(\gamma \in \Gamma \) and \(x\gamma x \in (M\Gamma x\gamma x) \), we have \(x \in (M\Gamma x\gamma x) \), thus \(M \) is left regular. In a similar way we prove that \(M \) is right regular. \(\square \)

References

Niovi Kehayopulu
Department of Mathematics
University of Athens
15784 Panepistimiopolis, Athens, Greece
nkhayop@math.uoa.gr

Michael Tsingelis
Hellenic Open University
School of Science and Technology
Studies in Natural Sciences, Greece
mtsingelis@hol.gr

Please, cite to this paper as published in