On injectors of finite groups

Shitian Liu* and Runshi Zhang**

* School of Science, Sichuan University of Science & Engineering, Zigong 643000 PR.China.
liust@suse.edu.cn

** School of Science, Sichuan University of Science & Engineering Zigong 643000 PR.China.
zhangrs-75@163.com

Received by the editors May 07, 2010; accepted for publication February 15, 2010.

Abstract

If F is a non-empty Fitting class, $\pi = \pi(F)$ and G a group such that every chief factor of G/G_F is an C^π_x-group. Then G has at least one F-injector. This result is used to resolve an open problem and generalize some known results.

Key Words: Fitting class, Soluble, Chief factor, F-injector.
Mathematics Subject Classification 2000: 20D10, 20F17

1 Introduction

All groups in this paper are finite. Fischer, Gaschütz, and Hartley [1] proved that for any Fitting class F and any finite solvable group G there exist F-injectors and any two of them are conjugate in G. A class F of groups is a Fitting class if (i) $G \in F$, $N \triangleleft G$ implies that $N \in F$ and (ii) $N_1, N_2 \triangleleft G$, $N_1, N_2 \in F$ implies that $N_1N_2 \in F$. Fitting classes were introduced by Fischer, Gaschütz, and Hartley [1]. If F is a Fitting class, each group G possesses a unique maximal normal F-subgroup called the F-radical of G and denoted by G_F, which contains each subnormal F-subgroup of G. Furthermore if N is subnormal in G, then $N_F = N \cap G_F$. A subgroup V of G is called an F-injector of G if $V \cap N$ is F-maximal in N for each subnormal subgroup N of G. In particular, an F-injector V of G lies in F and contains G_F. Tomkinson in [2] proved that let F be a Fitting class, then the G-group G possesses F-injectors, where G is the class of
periodic locally soluble FC-groups. Flavell in [3] proved that if \(G \) is a group whose local subgroups are \(N \)-constrained, then all nilpotent injectors of \(G \) are conjugate. Guo, and Vorob’ev [4] described the \(\mathcal{H} \)-injectors associated with a Hartley class \(\mathcal{H} \). And some good results are given by some authors (see [5,6,7,8]).

In this note, we give the following notations (see [9, p386-387]):

\(\pi \): any set of primes.

\(E_\pi : G \) has at least one Hall \(\pi \)-subgroup;

\(C_\pi : G \) satisfies \(E_\pi \) and any two Hall \(\pi \)-subgroups of \(G \) are conjugate in \(G \).

\(E_\pi^n : G \) has a nilpotent Hall \(\pi \)-subgroup.

\(C_\pi^* : G \) satisfies \(C_\pi \) and its Hall \(\pi \)-subgroup are soluble.

Guo, and Li [10] gave that, let \(\mathcal{F} \) be a non-empty Fitting class, \(\pi = \pi(G) \) and \(G \) a group such that every chief factor of \(G/G_{\mathcal{F}} \) is an \(E_\pi^n \)-group, then \(G \) has at most one \(\mathcal{F} \)-injector and any two \(\mathcal{F} \)-injectors are conjugate in \(G \).

Concerning Fitting classes and \(\mathcal{F} \)-injectors, the following problem arose:

Problem (see [11]). Let \(\mathcal{F} \) is a local Fitting class. Could we describe the \(\mathcal{F} \)-injectors of a group?

In this note, we will partially deal with the problem and prove the following main theorem.

Theorem 1.1. Let \(\mathcal{F} \) be a non-empty Fitting class, \(\pi = \pi(\mathcal{F}) \) and \(G \) a group such that every chief factor of \(G/G_{\mathcal{F}} \) is an \(C_\pi^* \)-group. Then

1. \(G \) has at least one \(\mathcal{F} \)-injector.
2. Any two \(\mathcal{F} \)-injector are exactly all the \(\mathcal{F} \)-maximal subgroups which contain the \(\mathcal{F} \)-radical \(G_{\mathcal{F}} \).
3. In any \(G \) there exist \(\mathcal{F} \)-injectors and any two of them are conjugate in \(G \).

For some notion and notations, the reader is referred to Ballester-Bolinches and Ezquerro [12], and Doerk and Hawkes [13].

Preliminaries

Definition 2.1 ([11]). A class \(\mathcal{F} \) of groups is a Fitting class if

(i) \(G \in \mathcal{F} \), \(N \triangleleft G \) implies that \(N \in \mathcal{F} \) and

(ii) \(N_1, N_2 \triangleleft G \), \(N_1, N_2 \in \mathcal{F} \) implies that \(N_1N_2 \in \mathcal{F} \).

Definition 2.2 (see [12] or [13]). A subgroup \(V \) of \(G \) is called an \(\mathcal{F} \)-injector of \(G \) if \(V \cap N \) is \(\mathcal{F} \)-maximal in \(N \) for each subnormal subgroup \(N \) of \(G \).

Lemma 2.1 ([11]). Let \(\mathcal{F} \) be a Fitting class. Then a soluble group \(G \) has at most one \(\mathcal{F} \)-injector and any two \(\mathcal{F} \)-injectors of \(G \) are conjugate in \(G \).
Lemma 2.2 ([10]). Let \mathcal{F} be a Fitting class, and H an \mathcal{F}-injector of G. Then the following statements hold:

1. H is an \mathcal{F}-maximal subgroup of G;
2. $G_{\mathcal{F}} \leq H$;
3. For every $x \in H$, H^x is also an \mathcal{F}-injector of G;
4. If K is subnormal subgroup of G, then $H \cap K$ is an \mathcal{F}-injector of K.

Lemma 2.3 ([1]). If V is an \mathcal{F}-injector of G and $V \leq H \leq G$, then V is an \mathcal{F}-injector of H.

Lemma 2.4 ([1]). Let $N \trianglelefteq G$ with G/N nilpotent. If V_1 and V_2 are \mathcal{F}-maximal in G and $V_1 \cap N = V_2 \cap N$ is \mathcal{F}-maximal in N, then V_1 and V_2 are conjugate in G.

Lemma 2.5 ([15, p334], or [14, Corollary 7.3.12]). Let \mathcal{F} be a Fitting class, if H is subnormal subgroup of G, then $H_{\mathcal{F}} = H \cap G_{\mathcal{F}}$.

Lemma 2.6 ([13, IX-Lemma 1.6]). Let \mathcal{F} be a Fitting class, and let G be a finite soluble group. Let $N \trianglelefteq G$, and let L be a subgroup of G such that $L \cap N$ is an \mathcal{F}-injector of N. Assume that either

1. G/N is nilpotent, and L is \mathcal{F}-maximal in G, or
2. $L \in \mathcal{F}$ and $LN = G$.

Then L is an \mathcal{F}-injector of G.

Lemma 2.7 ([9, Theorem C1]). If G has a series in which every factor is a C_{π}^s-group, then G is a C_{π}^s-group and every Hall π-subgroup of G is solvable.

Lemma 2.8. Let \mathcal{F} be a Fitting class and G a group. Suppose that $G/G_{\mathcal{F}}$ is soluble and G/N is soluble. If V is an \mathcal{F}-maximal subgroup of G and $V \cap N$ is an \mathcal{F}-injector of N, then V is an \mathcal{F}-injector of G.

Proof. Assume that the Lemma is not true and G is a minimal-order-counter-example. By [12, Theorem 2.4.27], G has a unique conjugate class of \mathcal{F}-injectors. Let V_0 be a \mathcal{F}-injector of G, then, by Lemma 2.2(1), V_0 is a maximal \mathcal{F}-subgroup of G.

Cases 1. $NV < G$.

Since G/N is soluble, VN/N is soluble. Obviously V is also a maximal \mathcal{F}-subgroup of VN. By Lemma 2.5, $(VN)_{\mathcal{F}} = NV \cap G_{\mathcal{F}}$. Hence the quotient $NV/(NV)_{\mathcal{F}} = NV/(NV \cap G_{\mathcal{F}}) \cong NVG_{\mathcal{F}}/G_{\mathcal{F}} \leq G/G_{\mathcal{F}}$ is soluble. Thus, the minimal choice of G implies that V is an \mathcal{F}-injector of G. By [12, Theorem 2.4.27], G has a unique conjugate class of \mathcal{F}-injectors, there exist an element $x \in NV$ such that $(V_0 \cap NV)^x = V$, and so $V \leq V_0^x$. Since an \mathcal{F}-maximal subgroup of G, $V = V_0^x$, and so V is an \mathcal{F}-injector of G by virtue of Lemma 2.2(3), a contradiction.

Cases 2. $NV = G$.
Let M be a maximal normal subgroup of G containing N. Since G/N is soluble, M/N is soluble. It is easy to see that $V \cap M \triangleleft V$. Let V_1 be a maximal \mathcal{F}-subgroup of M with $V \cap N \leq V_1$. Since $V \cap N = (V \cap M) \cap N \leq V_1 \cap N$ and $V_1 \cap N = (V_1 \cap N) \cap (NV) = (V \cap N) \cap (V_1 \cap N) \leq V \cap N$, $V_1 \cap N = V \cap N$ is an \mathcal{F}-injector of N by hypotheses, and, by Lemma 2.2(3), the quotient $M/M_{\mathcal{F}} = M/(M \cap G_{\mathcal{F}}) \cong MG_{\mathcal{F}}/G_{\mathcal{F}} \leq G/G_{\mathcal{F}}$ is soluble. The minimal choice of G implies that V_1 is an \mathcal{F}-injector of M. Since $M = (NV) \cap M = N(V \cap M) \leq NV_1 \leq G$, $NV_1 = G$ or M. If the former, then, $G/N = NV/N \cong V/V \cap N \cong V_1N/N \cong V_1V_1 \cap N$. Comparing the order, we have $V_1 = V^x$ for some $x \in G$. By Lemma 2.2(3), V_1 is an \mathcal{F}-injector of G, a contradiction. So have $M = NV_1$, and $|N(V \cap M)| = |NV_1| = |M|$. This shows $|N||V \cap M|/|V \cap N| = |N||V_1|/|N \cap V_1|$ and hence $(V \cap M)^x = V_1$ for some $x \in G$. By Lemma 2.2(3), $V \cap M$ is an \mathcal{F}-injector of M. On the other hand, by Lemma 2.2(4), $V_0 \cap M$ is an \mathcal{F}-injector of M. By [12, Theorem 2.4.27], there exists an $x \in M$ such that $V_0 \cap M = (V \cap M)^x = V^x \cap M$. Moreover, by Lemma 2.2(1), V_0, V^x are \mathcal{F}-maximal subgroup of M and $G_{\mathcal{F}} \leq V \cap V_0$. By [16, Lemma 2.3], V, V_0 are conjugate in G, and so V is an \mathcal{F}-injector of G, a contradiction.

This completes the proof. □

Lemma 2.9. Let \mathcal{F} be non-empty Fitting class and G a group. If every chief factor of $G/G_{\mathcal{F}}$ is an C_{n^*}-group and $N \triangleleft G$, then every chief factor of $N/N_{\mathcal{F}}$ is also an C_{n^*}-group.

Proof. By hypotheses, there exists a series

$$G_0 \leq G_1 \leq G_2 \leq \cdots \leq G_n = G$$

Such that every chief factor are C_{n^*}-group. Since $N_{\mathcal{F}} = N \cap G_{\mathcal{F}}$ by Lemma 2.5, $N/N_{\mathcal{F}} = N/(N \cap G_{\mathcal{F}}) \cong NG_{\mathcal{F}}/G_{\mathcal{F}} \leq G/G_{\mathcal{F}}$. It follows that, intersection of N and the above series is the series such that every chief factor of $N/N_{\mathcal{F}}$ is also an C_{n^*}-group.

This completes the proof. □

3 Some results

In this section, we will give the proof of the main theorem 1.1 and some applications.

The proof of Theorem 1.1

Proof. Our proof proceeds via a number of steps.

Step 1. G is a C_π-group and if H is a Hall π-subgroup of G, then $H/H_{\mathcal{F}}$ is soluble.

By Lemma 2.7, we have G is a C_π-group and, since $G_{\mathcal{F}} \leq H_{\mathcal{F}} \leq H$, $H/H_{\mathcal{F}}$ is soluble.

Step 2. If G has an \mathcal{F}-injector, then an \mathcal{F}-injector of G is also an \mathcal{F}-injector of some Hall π-subgroup of G.

Let V be an \mathcal{F}-injector of G. Assume that V is a π-group of G. Without loss of generality, assume that $V \leq H$. Now prove that V is also an \mathcal{F}-injector of H.

17
Denote \(N = G \). Then set
\[
\mathcal{F}^* = \{ M/N : M \in \mathcal{F}, N \leq M \}
\]
is a Fitting set of the soluble group \(G/N \).
Moreover, by [13, VIII-2.17(a)], have that
\[
\mathcal{F}_0 = \{ S \leq G : SN/N \in \mathcal{F}^* \text{ and } S \text{ is subnormal in } SN \}
\]
is a Fitting set of \(G \). Observe that \(\mathcal{F}_0 \subset \mathcal{F} \) and, for any subnormal subgroup \(S \) of \(G \), \(S_{\mathcal{F}_0} = S \). By hypotheses of the theorem, \(G \) has a subnormal series
\[
1 \leq N = G \triangleleft G_0 \leq G_1 \leq G_2 \leq \cdots \leq G_n = G
\]
such that \(G_i/G_{i-1} \) is a \(G \)-chief factor and is an \(E^*_G \)-group. By [13, VIII-2.17(b)], if \(V/N \) is an \(\mathcal{F}^* \)-injector of \(H/N \), then \(V \) is a \(\mathcal{F}_0 \)-injector of \(H \). Since \(G \triangleleft H \), \(H \) has the subnormal series
\[
1 \leq G = H \cap G_0 \leq G_1 \cap H \leq G_2 \cap H \cdots \leq G_{n-1} \cap H \leq G_n \cap H = H
\]
such that \(G_i \cap H/G_{i-1} \cap H \) is an \(E^*_G \)-group by Lemma 2.6. And also \(V \) is an \(\mathcal{F} \)-injector of \(H \). To see that, we prove that, for any subnormal subgroup \(H_i = G_i \cap H \) of \(H \), the subgroup \(V \cap H_i \) is \(\mathcal{F} \)-maximal in \(H_i \). Suppose that there exists \(W \in \mathcal{F} \) such that \(V \cap H_i \leq W \leq H_i \). Then \((V \cap H_i)N/N = (V/N) \cap (SN/N) \leq WN/N \leq H_iN/N \). Since \(H_i \mathcal{F}_0 = H_i \mathcal{F} \leq V \cap H_i \in \text{Inj}_{\mathcal{F}_0}(H_i) \), then \(H_i \mathcal{F} \leq W \). By Lemma 2.5, \(N \cap H_i = H_i \mathcal{F} \). Therefore \(W(N \cap H_i) = WH_i \mathcal{F} = W \), \(W \) is subnormal in \(WN \), and so \(WN \in \mathcal{F} \). Thus, \(WN/N \in \mathcal{F}^* \). Since \((V/N) \cap (H_iN/N) \) is \(\mathcal{F}^* \)-maximal in \(H_iN/N \), \((V \cap H_i)N = WN \), This means that \(V \cap H_i = (V \cap H_i)(N \cap H_i) = WN \cap H_i = W \), and \(V \cap H_i \) is \(\mathcal{F} \)-maximal in \(H_i \). Therefore, have that \(V \in \text{Inj}(G) \).

Step 3. If \(G \) have \(\mathcal{F} \)-injectors, then any two \(\mathcal{F} \)-injectors are conjugate in \(G \).

By [13, VIII-2.15], if \(V \in \text{Inj}(G) \), then \(V/N \) is an \(\mathcal{F}^* \)-injector of the soluble group \(G/N \). By Lemma 2.1, the \(\mathcal{F}^* \)-injectors of \(G/N \) are conjugate in \(G/N \). And so any two \(\mathcal{F} \)-injectors are conjugate in \(G \).

Step 4. \(G \) has an \(\mathcal{F} \)-injector.

Let \(H \) be a Hall \(\pi \)-subgroup of \(G \), Then \(H/H \) is soluble by step 1, and hence \(H \) has an \(\mathcal{F} \)-injector by [12, Theorem 2.4.27]. In order to prove that \(G \) has an \(\mathcal{F} \)-injector, only needs to prove an arbitrary \(\mathcal{F} \)-injector of \(H \) is an \(\mathcal{F} \)-injector of \(G \).

Let \(V \) be an \(\mathcal{F} \)-injector of \(H \). Let \(K \) be an subnormal subgroup of \(G \). Then \(V \cap K \) is a subnormal subgroup of \(H \). By Lemma 2.2(4), the subgroup \(V \cap K = (V \cap H) \cap K = V \cap (H \cap K) \) is an \(\mathcal{F} \)-injector of \(H \cap K \). Since \(|K : H \cap K| = |KH : H| \) is a \(\pi \)-number, \(H \cap K \) is a Hall \(\pi \)-subgroup of \(K \). So we need to deal with the following cases: \(K = G \) or \(K < G \).

Case 1: \(K < G \). Then by induction, \(V \cap K \) is an \(\mathcal{F} \)-injector of \(K \), and \(V \cap K \) is an \(\mathcal{F} \)-maximal subgroup of \(K \). Since \(K \) is arbitrary, \(V \) is also an \(\mathcal{F} \)-injector of \(G \).

Case 2: \(K = G \). Let \(W \) be an maximal \(\mathcal{F} \)-subgroup of \(G \) with \(V \leq W \leq G \). Since for every subnormal subgroup \(M \) of \(G \), \(W \cap M = V \cap M \) is an \(\mathcal{F} \)-maximal subgroup of \(M \).
by case 1. And so \(W \) is an \(\mathcal{F} \)-injector of \(G \). Since \(G \in C^s_\pi \), there exists an element \(x \in G \) such that \(V \leq W \leq H^x \). But, by Lemma 2.2(3), \(V^x \) is also an \(\mathcal{F} \)-injector of \(H^x \). By step 2, \(W \) is also an \(\mathcal{F} \)-injector of \(H \). Since \(H/H^x \) is soluble, by [12, Theorem 2.4.27], \(W \) and \(V \) are conjugate in \(G \), and so \(V = W \).

This completes the proof. \(\square \)

Remark 3.1. This Theorem 1.1 is comparing the Theorem 2.4.27 of [12].

Corollary 3.1. Let \(\mathcal{F} \) be a non-empty Fitting class and \(\pi = \pi(\mathcal{F}) \). If every chief factor for every maximal subgroup of \(G \) is an \(C^s_\pi \)-group, then \(G \) has an \(\mathcal{F} \)-injector.

Proof. 1. Let \(M_1, M_2 \) be maximal subgroups of \(G \) such that \(M_1, M_2 \) are not conjugate in \(G \). Then \(G = M_1M_2 \). By Theorem 3.1, \(M_1, M_2 \) have \(\mathcal{F} \)-injectors \(V_1, V_2 \).

If \(M_1 \cap M_2 = 1 \), then \(G = M_1 \times M_2 \), and, by [17, Lemma 1], \(G \) contains \(\mathcal{F} \)-injectors which are the product of the \(\mathcal{F} \)-injectors of the factors, \(M_1, M_2 \).

If \(M_1 \cap M_2 \neq 1 \), so there exists a prime \(p \) dividing the order of \(M_1 \cap M_2 \). And so assume that \(|G : M_1| = p \) or \(q \), where \(p \neq q \).

Case 1: If \(|G : M_1| = q \), then \(M_1 \triangleleft G \), and \(V_1 \), which is an \(\mathcal{F} \)-injector of \(M_1 \), is also an \(\mathcal{F} \)-injector of \(G \). To see this. Only needs to prove every subnormal subgroup \(K \) of \(G \), \(V_1 \cap K \) is an \(\mathcal{F} \)-injector of \(K \). By Lemma 2.5, \(M_1 \mathcal{F} = G \mathcal{F} \cap M_1 \). By hypotheses, there exists a series

\[
1 \leq W_0 = M_1 \mathcal{F} = G \mathcal{F} \cap M_1 \leq W_1 \leq W_2 \leq \cdots \leq W_{n-1} = M_1 \leq W_n = G
\]

such that every chief factor of \(G \) is \(E^s_\pi \)-group, then by Theorem 1.1, \(V_1 \) is an \(\mathcal{F} \)-injector of \(G \).

Case 2: If \(|G : M_1| = p \), then, for a Sylow \(p \)-subgroup \(P_1 \) of \(M_1 \), there exists a \(p \)-subgroup \(P_2 \) such that \(P = P_1P_2 \) is a Sylow \(p \)-subgroup of \(G \) and \(|P : P_1| = p \). If \(p \notin \pi(\mathcal{F}) \), by case 1, \(V_1 \) is an \(\mathcal{F} \)-injector of \(G \). If \(p \in \pi(\mathcal{F}) \), then there exists a Hall subgroup \(H \) such that \(H/H^x \) is soluble. So by Theorem 1.1, \(G \) has an \(\mathcal{F} \)-injector.

2. Let \(M_1, M_2 \) be maximal subgroups of \(G \) such that \(M_1, M_2 \) are conjugate in \(G \). Then \(M_1M_2 = M_2^gM_2 = M_2 \leq G \), for some \(g \in G \). Then, if \(M_2 < G \), by case 2, \(G \) also has an \(\mathcal{F} \)-injector. If \(M_2 = G \), by Lemma 2.6, and Theorem 1.1, \(G \) has an \(\mathcal{F} \)-injector.

This completes the proof. \(\square \)

Remark 3.2. If the condition of Corollary 3.1 is that, every chief factor is an \(E^m_\pi \), we also can get the same result.

Corollary 3.2. Let \(\mathcal{F} \) be a non-empty Fitting class. If every chief factor of \(G \) is an \(E^s_\pi \)-group, then \(A \) is an \(\mathcal{F} \)-injector of \(G \) if and only if \(A \) is a maximal \(\mathcal{F} \)-subgroup of \(G \) containing \(G \mathcal{F} \).
Acknowledgment.

The authors would like to thank the referee for the valuable suggestions and comments. This object is partially supported by Scientific Research Fund of School of Science of SUSE.

References

