Armenian Journal of Mathematics

Fractional integrals and hypersingular integrals in variable order Holder spaces on homogeneous spaces

Samko, N. and Samko, S. and Vakulov, B. (2009) Fractional integrals and hypersingular integrals in variable order Holder spaces on homogeneous spaces. Armenian Journal of Mathematics, 2 (2). pp. 38-64. ISSN 1829-1163

[img]
Preview
PDF - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
295Kb

Abstract

We consider non-standard H\"older spaces $H^{\lb(\cdot)}(X)$ of functions $f$ on a metric measure space $(X,d,\mu)$, whose H\"older exponent $\lb(x)$ is variable, depending on $x\in X$. We establish theorems on mapping properties of potential operators of variable order $\al(x)$, from such a variable exponent H\"older space with the exponent $\lb(x)$ to another one with a ``better'' exponent $\lb(x)+\al(x)$, and similar mapping properties of hypersingular integrals of variable order $\al(x)$ from such a space into the space with the ``worse'' exponent $\lb(x)-\al(x)$ in the case $\al(x)<\lb(x)$. These theorems are derived from the Zygmund type estimates of the local continuity modulus of potential and hypersingular operators via such modulus of their ensities. These estimates allow us to treat not only the case of the spaces $H^{\lb(\cdot)}(X)$, but also the generalized H\"older spaces $H^{w(\cdot,\cdot)}(X)$ of functions whose continuity modulus is dominated by a given function $w(x,h), x\in X, h>0$. We admit variable complex valued orders $\al(x)$, where $\Re\al(x)$ may vanish at a set of measure zero. To cover this case, we consider the action of potential operators to weighted generalized H\"older spaces with the weight $\al(x)$.

Item Type:Article
Subjects:42-xx Fourier analysis
46-xx Functional analysis
26-xx Real functions
ID Code:123
Deposited By:Professor Anry Nersesyan
Deposited On:04 Jun 2009 00:54
Last Modified:19 Apr 2011 02:23

Repository Staff Only: item control page